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LINEAR CLASSIFIERS



Problems

1 Please do Problem 8.3 in the textbook. We will
discuss this in class.
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Classification: Problem Statement

In regression, we are modeling the relationship
between a continuous input variable x and a

continuous target variable .

In classification, the input variable x may still be
continuous, but the target variable is discrete.

In the simplest case, t can have only 2 values.

e.g., Lett=+1<«> x assigned to (.
t =1« x assigned to C,
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Example Problem

-1 Animal or Vegetable?
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Discriminative Classifiers

If the conditional distributions are normal, the best
thing to do is to estimate the parameters of these
distributions and use Bayesian decision theory to
classify input vectors. Decision boundaries are

generally quadratic.

However if the conditional distributions are not
exactly normal, this generative approach will yield
sub-optimal results.

Another alternative is to build a discriminative
classifier, that focuses on modeling the decision
boundary directly, rather than the conditional
distributions themselves.
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Linear Models for Classification

o Linear models for classification separate input vectors into
classes using linear (hyperplane) decision boundaries.

Example:

2D Input vector x
Two discrete classes C, and C,
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Two Class Discriminant Function

y>0 L2

y(x)=w'x+w,

y(X)=0— X assigned to C,

y(X) <0 — x assigned to C,

Thus y(x) =0 defines the decision boundary
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Two-Class Discriminant Function

y(X)=w'X+w,

y(x)=0— x assigned to C,
y(x) <0 — x assigned to C, y <0

For convenience, let

t t
W = I:Wl"'WM:| = |:WO Wl...WMi|

and

X = [xl...xMT = [1 xl...xMT

So we can express y(x)= w'x
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Generalized Linear Models

For classification problems, we want y to be a predictor of t. In other
words, we wish to map the input vector into one of a number of discrete
classes, or to posterior probabilities that lie between O and 1.

For this purpose, it is useful to elaborate the linear model by introducing a
nonlinear activation function f, which typically will constrain y to lie between
-1 and 1 or between 0 and 1.

y(x)= f(wtx + WO)

l
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The Perceptron

t y(X) =0 — x assigned to C
y(x):f(wx+wo) | 1
y(X)< 0 — X assigned to C,
A classifier based upon this simple generalized linear model is
pie g

called a (single layer) perceptron.

It can also be identified with an abstracted model of a neuron
called the McCulloch Pitts model.

X 1 Ve >
X 2 < /\\\ \\_;]\
\\'\\} \\
W, /o
2 > f >
/ S
W \

Ly <& w,

XQRK ' CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition J. Elder




- End of Lecture
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Parameter Learning

1 How do we learn the parameters of a perceptron?
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Qutline

The Perceptron Algorithm
Least-Squares Classifiers
Fisher’s Linear Discriminant

Logistic Classifiers
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Case 1. Linearly Separable Inputs

For starters, let’s assume that the training data is in
fact perfectly linearly separable.

In other words, there exists at least one hyperplane
(one set of weights) that yields O classification error.

We seek an algorithm that can automatically find
such a hyperplane.




The Perceptron Algorithm

-1 The perceptron algorithm was
invented by Frank Rosenblatt
(1962).

-1 The algorithm is iterative.

11 The strategy is to start with a
random guess at the weights w,
and to then iteratively change
the weights to move the
hyperplane in a direction that
lowers the classification error.




The Perceptron Algorithm

Note that as we change the weights continuously,
the classification error changes in discontinuous,

piecewise constant fashion.

Thus we cannot use the classification error per se as
our objective function to minimize.

What would be a better objective function?




The Perceptron Criterion

Note that we seek w such that

w'x >0 when t = +1
w'x <0 when t = -1

In other words, we would like
wtxntn >0 Vn
Thus we seek to minimize

E, (w) =-> wix t

where M is the set of misclassified inputs.
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The Perceptron Criterion

E, (w) =— 2 wx t

neM
where ‘M is the set of misclassified inputs.

Observations:
E.(w) is always non-negative.

E.(w) is continuous and
piecewise linear, and thus
easier to minimize.
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The Perceptron Algorithm

E, (w) =— 2 wx t

neM
where ‘M is the set of misclassified inputs.
dE_(w
L — xntn EP (W)
dW neM

where the derivative exists.

1 Gradient descent:

w =wf—nVEP(w)=wT+n2xntn \/
nem
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The Perceptron Algorithm

w™=w’-nVE, (w) =w'+n) x t
neM
Why does this make sense?

If an input from C, (t = +1) is misclassified, we need to
make its projection on w more positive.

If an input from C, (t = -1) is misclassified, we need to
make its projection on w more negative.
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The Perceptron Algorithm

The algorithm can be implemented sequentially:

Repeat until convergence:
For each input (x , 1 ):
If it is correctly classified, do nothing
If it is misclassified, update the weight vector to be
w=w'4+nx t
Note that this will lower the contribution of input n to the
objective function:

—(w‘”)t Xt — —(w(””)t xt = —(w(”)t Xt — n(xntn)t Xt < —(w(”)t xt.
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Not Monotonic

While updating with respect to a misclassified input
n will lower the error for that input, the error for
other misclassified inputs may increase.

Also, new inputs that had been classified correctly
may now be misclassified.

The result is that the perceptron algorithm is not
guaranteed to reduce the total error monotonically
at each stage.
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The Perceptron Convergence Theorem

1 Despite this non-monotonicity, if in fact the data are
linearly separable, then the algorithm is
guaranteed to find an exact solution in a finite
number of steps (Rosenblatt, 1962).
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Example
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The First Learning Machine
s

1 Mark 1 Perceptron Hardware (c. 1960)

Visual Inputs Patch board allowing Rack of adaptive weights w
configuration of inputs @ (motor-driven potentiometers)
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Practical Limitations

The Perceptron Convergence Theorem is an
important result. However, there are practical
limitations:

Convergence may be slow

If the data are not separable, the algorithm will not
converge.

We will only know that the data are separable once
the algorithm converges.

The solution is in general not unique, and will depend
upon initialization, scheduling of input vectors, and the
learning rate 7.
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Generalization to inputs that are not linearly separable.

The single-layer perceptron can be generalized to
yield good linear solutions to problems that are not
linearly separable.

Example: The Pocket Algorithm (Gal 1990)

ldea:
Run the perceptron algorithm

Keep track of the weight vector w* that has produced the
best classification error achieved so far.

It can be shown that w* will converge to an optimal solution
with probability 1.
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Generalization to Multiclass Problems

7 How can we use perceptrons, or linear classifiers in
general, to classify inputs when there are K > 2

classes?
A
Label1 Label2
x 0 °
DDDDDD O J“’voo o C
Oa -~ D
0O ~ O
Label3
- N
SESEES
SRS
1 R
!
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K>2 Classes

ldea #1: Just use K-1 discriminant functions, each of
which separates one class C, from the rest. (One-

versus-the-rest classifier.)

Problem: Ambiguous regions

Rs

not Cq

not Co
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K>2 Classes

ldea #2: Use K(K-1)/2 discriminant functions, each
of which separates two classes (;, (, from each
other. (One-versus-one classifier.)

Each point classified by majority vote.

Problem: Ambiguous regions
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K>2 Classes

ldea #3: Use K discriminant functions y, (x)

Use the magnitude of y, (x), not just the sign.
Y, (X)=w;Xx

x assigned to C, if y, (x)> yj(x)Vj #k

Decision boundary y, (x) = yj(x) - (Wk -w, )t X+ (Wko — Wjo) =0

Results in decision regions that are
simply-connected and convex.

—® X B

R
XA o=— §
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Example: Kesler’s Construction

The perceptron algorithm can be generalized to K-
class classification problems.

Example:

Kesler’s Construction:

Allows use of the perceptron algorithm to simultaneously
learn K separate weight vectors w..

Inputs are then classified in Class i if and only if
WX > WX Vj#i
The algorithm will converge to an optimal solution if a

solution exists, i.e., if all training vectors can be correctly
classified according to this rule.
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1-of-K Coding Scheme

When there are K>2 classes, target variables can
be coded using the 1-of-K coding scheme:

Input from Class C, < t=[00 ...1...0 O]

T

Element |
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Computational Limitations

Initially, the perceptron was
thought to be a potentially
powerful learning machine that
could model human neural
processing.

However, Minsky & Papert
(1969) showed that the single-
layer perceptron could not learn
a simple XOR function.

This is just one example of a
non-linearly separable pattern
that cannot be learned by a
single-layer perceptron.

of Perceptrons

Marvin Minsky (1927 -)

R”Ig ' CSE 4404 /5327 Introduction to Machine Learning and Pattern Recognition J. Elder



u
u

N
N

| V E
IV E

R
R

Multi-Layer Perceptrons
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Minsky & Papert’s book was widely

misinterpreted as showing that
artificial neural networks were
inherently limited.

This contributed to a decline in the
reputation of neural network
research through the 70s and 80s.

However, their findings apply only
to single-layer perceptrons. Multi-
layer perceptrons are capable of
learning highly nonlinear functions,
and are used in many practical
applications.
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Qutline

The Perceptron Algorithm
Least-Squares Classifiers
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Dealing with Non-Linearly Separable Inputs

The perceptron algorithm fails when the training
data are not perfectly linearly separable.

Let’s now turn to methods for learning the
parameter vector w of a perceptron (linear
classifier) even when the training data are not
linearly separable.
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The Least Squares Method

In the least squares method, we simply fit the (x, t)
observations with a hyperplane y(x).

Note that this is kind of a weird ideaq, since the t
values are binary (when K=2), e.g., O or 1.

However it can work pretty well.
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Least Squares: Learning the Parameters

Assume D —dimensional input vectors x.

Foreach class ke1...K:

Y, (X)= wf{x +Ww,,

~

— y(x)= WX
where
x=(1,x")

W is a (D + 1) x K matrix whose kth column is W, = (WO,WZ)t
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Learning the Parameters

Method #2: Least Squares
y(x)=W

Training dataset (xn,tn), n=1...,N
where we use the 1-of-K coding scheme for t_

Let T be the N x K matrix whose n" row is t’

Let X be the N x (D +1) matrix whose n" row is x
Let R, (W)=XW-T
Then we define the error as E ( ) ZR —Tr{ (W)t RD(W)}

Setting derivative wrt W to 0 yields: 5
NS . . 0 _ ot
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The Perceptron Algorithm
Least-Squares Classifiers
Fisher’s Linear Discriminant

Logistic Classifiers
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Fisher’s Linear Discriminant

Another way to view linear discriminants: find the 1D subspace
that maximizes the separation between the two classes.

Let m, :Ninn, mZ:Ninn

1 neC; 2 neC,
For example, might choose w to maximize w' (m2 — m1), subject to HWH =1

This leads to w o m,-m,

4t e
0.\ \\.'," Lo
However, if conditional distributions are not isotropic, ) "'l["
this is typically not optimal. | T
-2 2 6
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Fisher’s Linear Discriminant

Let m =w'm, m,=w'm, be the conditional means on the 1D subspace.

Let S;f = 2 ( Yy, - mk)2 be the within-class variance on the subspace for class C,

neC,
2
. o . (m2 - 1) [
The Fisher criterion is then J(w)=-~———~ 4 .
Sy +S, \ e R
) . 5l ‘/* o ,._..-.--. T ‘
This can be rewritten as g/ AYT
e R
t . )
wS w .
J(W) = 8 or —
w'S, w ?
where -2
t, . . .
S, = (m2 — m1)(m2 — m1) is the between-class variance 5 ) 6

and

S, =2 (xn - m1)(xn - m1)t + (xn - mz)(xn - mz)t is the within-class variance

neC1 neC2

J(w) is maximized forw « S/ (m2 —~ m1)
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Connection to MVYN Maximum Likelihood

J(w) is maximized for w < S/ (m2 - m1)

Recall that if the two distributions are normal with
the same covariance 2., the maximum likelihood
classifier is linear, with

W o< 2‘1(m2—m1)

Further, note that S, is proportional to the maximum
likelihood estimator for 2.

Thus FLD is equivalent to assuming MVN distributions
with common covariance.
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Connection to Least-Squares

Change coding scheme used in least-squares method to

n

t :% for C,

Then one can show that the ML w satisfies
WoS (m2 — m1)
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Problems with Least Squares

71 Problem #1: Sensitivity to outliers
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Problems with Least Squares

1 Problem #2: Linear activation function is not a
good fit to binary data. This can lead to problems.
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Logistic Regression (K = 2)

EEEEEEEEEE

, : ;1 € Sy P
Tiyi € S o) 000 ¢ 0
e @) & o

w'e 0,
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Logistic Regression

Number of parameters

Logistic regression: M

Gaussian model: 2M + 2M(M+1)/2 + 1 = M?+3M+1
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ML for Logistic Regression

N 1-t t
p(tiw)=]Tyr{1-y,} where t=(t,...,t,) andy, =p(C, |9,)

n=1

We define the error function to be E(w) = —Iogp(t | w)

Giveny = G(an) and a =w'¢ , one can show that

N

VE(W): Z(yn _tn)(Pn

n=1
Unfortunately, there is no closed form solution for w.
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ML for Logistic Regression:

lterative Reweighted Least Squares

Although there is no closed form solution for the ML
estimate of w, fortunately, the error function is convex.

Thus an appropriate iterative method is guaranteed to
find the exact solution.

A good method is to use a local quadratic

approximation to the log likelihood function (Newton-
Raphson update):

W(new) — W(old) . H—1VE(W)
where H is the Hessian matrix of E(w)
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The Hessian Matrix H

H=V,V EW) ie., H, = ;\f (E;"’W) .
i J

H, describes how the i" component of the gradient
varies as we move in the w; direction.

Let u be any unit vector. Then

Hu describes the variation in the gradient as we move
in the direction v.

U'Hu describes the projection of this variation onto wv.

Thus u'Hu measures how much the gradient is changing
in the u direction as we move in the v direction.
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ML for Logistic Regression

w(new) — W(o/d H 1VE( )

where H is the Hessian matrix of E(w):

H=d'RD

where R is the Nx N diagonal weight matrix with R, =y, (1-y,)

and @ is the N x M design matrix whose n” row is given by ¢'.

(Note that, since R >0, R is positive semi-definite, and hence H is positive semi-definite
Thus E(w) is convex.)

Thus

W — ) ((I)tR(I)) D! (y _ t) See Problem 8.3 in the text!
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ML for Logistic Regression

0 Iterative Reweighted Least Squares
p(C19)=y(0)=0(w')
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Logistic Regression

For K>2, we can generalize the activation function
by modeling the posterior probabilities as

_ exp(a, )
;exp(aj)

where the activations a, are given by

p(C, 19)=y,(9)

ot
ak_wk(z)
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Example

0
6
Least-Squares Logistic
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