
J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

LINEAR CLASSIFIERS 

Last updated:  Oct 22, 2012 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

2 

Problems 

¨  Please do Problem 8.3 in the textbook.  We will 
discuss this in class. 
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Classification:  Problem Statement 

¨  In regression, we are modeling the relationship 
between a continuous input variable x and a 
continuous target variable t. 

¨  In classification, the input variable x may still be 
continuous, but the target variable is discrete. 

¨  In the simplest case, t can have only 2 values. 

    

e.g., Let t = +1↔ x assigned to C1

t = −1↔ x assigned to C2
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Example Problem 

¨  Animal or Vegetable? 
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Discriminative Classifiers 

¨  If the conditional distributions are normal, the best 
thing to do is to estimate the parameters of these 
distributions and use Bayesian decision theory to 
classify input vectors.  Decision boundaries are 
generally quadratic. 

¨  However if the conditional distributions are not 
exactly normal, this generative approach will yield 
sub-optimal results. 

¨  Another alternative is to build a discriminative 
classifier, that focuses on modeling the decision 
boundary directly, rather than the conditional 
distributions themselves. 
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Linear Models for Classification 

¨  Linear models for classification separate input vectors into 
classes using linear (hyperplane) decision boundaries. 
¤  Example: 
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Two Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ≥ 0→ x assigned to C
1

y(x) < 0→ x assigned to C
2

   Thus y(x) = 0 defines the decision boundary

x2
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Two-Class Discriminant Function 

   
y(x) = wt x +w

0

    

y(x) ≥ 0→ x assigned to C
1

y(x) < 0→ x assigned to C
2

    

For convenience, let
w = w1 …wM⎡⎣ ⎤⎦

t
⇒ w0  w1 …wM⎡⎣ ⎤⎦

t

and
x = x1 …xM⎡⎣ ⎤⎦

t
⇒ 1 x1 …xM⎡⎣ ⎤⎦

t

   So we can express y(x) = w tx
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Generalized Linear Models 

¨  For classification problems, we want y to be a predictor of t.  In other 
words, we wish to map the input vector into one of a number of discrete 
classes, or to posterior probabilities that lie between 0 and 1. 

¨  For this purpose, it is useful to elaborate the linear model by introducing a 
nonlinear activation function f, which typically will constrain y to lie between 
-1 and 1 or between 0 and 1. 

   
y(x) = f w tx +w0( )
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The Perceptron 

¨  A classifier based upon this simple generalized linear model is 
called a (single layer) perceptron. 

¨  It can also be identified with an abstracted model of a neuron 
called the McCulloch Pitts model. 

   
y(x) = f w tx +w0( )

    

y(x) ≥ 0→ x assigned to C
1

y(x) < 0→ x assigned to C
2
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End of Lecture 
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Parameter Learning 

¨  How do we learn the parameters of a perceptron? 
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Outline 

¨  The Perceptron Algorithm 
¨  Least-Squares Classifiers 
¨  Fisher’s Linear Discriminant 
¨  Logistic Classifiers 
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Case 1.  Linearly Separable Inputs 

¨  For starters, let’s assume that the training data is in 
fact perfectly linearly separable. 

¨  In other words, there exists at least one hyperplane 
(one set of weights) that yields 0 classification error. 

¨  We seek an algorithm that can automatically find 
such a hyperplane. 
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The Perceptron Algorithm 

¨  The perceptron algorithm was 
invented by Frank Rosenblatt 
(1962). 

¨  The algorithm is iterative. 
¨  The strategy is to start with a 

random guess at the weights w, 
and to then iteratively change 
the weights to move the 
hyperplane in a direction that 
lowers the classification error. 

Frank Rosenblatt (1928 – 1971) 
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The Perceptron Algorithm 

¨  Note that as we change the weights continuously, 
the classification error changes in discontinuous, 
piecewise constant fashion.   

¨  Thus we cannot use the classification error per se as 
our objective function to minimize. 

¨  What would be a better objective function?  
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The Perceptron Criterion 

¨  Note that we seek w such that 

¨  In other words, we would like 
 
¨  Thus we seek to minimize 

   

w tx ≥ 0 when t = +1
w tx < 0 when t = −1

   w
txntn ≥ 0 ∀n

    

EP w( ) = − w txntn
n∈M
∑

where M  is the set of misclassified inputs.
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The Perceptron Criterion 

¨  Observations: 
¤ EP(w) is always non-negative. 
¤ EP(w) is continuous and 

piecewise linear, and thus 
easier to minimize. 

    

EP w( ) = − w txntn
n∈M
∑

where M  is the set of misclassified inputs.

  EP w( )

 wi
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The Perceptron Algorithm 

¨  Gradient descent: 

    

EP w( ) = − w txntn
n∈M
∑

where M  is the set of misclassified inputs.

  EP w( )

 wi

    

dEP w( )
dw

= − xntn
n∈M
∑

where the derivative exists.

    
wτ +1 = wτ −η∇EP w( ) = wτ +η xntn

n∈M
∑
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The Perceptron Algorithm 

¨  Why does this make sense? 
¤  If an input from C1(t = +1) is misclassified, we need to 

make its projection on w more positive. 
¤  If an input from C2 (t = -1) is misclassified, we need to 

make its projection on w more negative. 

    
wτ +1 = wτ −η∇EP w( ) = w t +η xntn

n∈M
∑
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The Perceptron Algorithm 

¨  The algorithm can be implemented sequentially: 
¤ Repeat until convergence: 

n For each input (xn, tn): 
n  If it is correctly classified, do nothing 
n  If it is misclassified, update the weight vector to be 

n  Note that this will lower the contribution of input n to the 
objective function: 

   w
τ +1 = wτ +ηxntn

   
− w (τ )( )t xntn → − w (τ +1)( )t xntn = − w (τ )( )t xntn −η xntn( )t xntn < − w (τ )( )t xntn.
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Not Monotonic 

¨  While updating with respect to a misclassified input 
n will lower the error for that input, the error for 
other misclassified inputs may increase. 

¨  Also, new inputs that had been classified correctly 
may now be misclassified. 

¨  The result is that the perceptron algorithm is not 
guaranteed to reduce the total error monotonically 
at each stage. 
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The Perceptron Convergence Theorem 

¨  Despite this non-monotonicity, if in fact the data are 
linearly separable, then the algorithm is 
guaranteed to find an exact solution in a finite 
number of steps (Rosenblatt, 1962). 
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Example 
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The First Learning Machine 

¨  Mark 1 Perceptron Hardware (c. 1960) 

Visual Inputs Patch board allowing  
configuration of inputsφ 

Rack of adaptive weights w 
(motor-driven potentiometers) 
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Practical Limitations 

¨  The Perceptron Convergence Theorem is an 
important result.  However, there are practical 
limitations: 
¤ Convergence may be slow 
¤  If the data are not separable, the algorithm will not 

converge. 
¤ We will only know that the data are separable once 

the algorithm converges. 
¤ The solution is in general not unique, and will depend 

upon initialization, scheduling of input vectors, and the 
learning rate η. 
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Generalization to inputs that are not linearly separable. 

¨  The single-layer perceptron can be generalized to 
yield good linear solutions to problems that are not 
linearly separable. 

¨  Example:  The Pocket Algorithm (Gal 1990) 
¤  Idea:   

n Run the perceptron algorithm 
n Keep track of the weight vector w* that has produced the 

best classification error achieved so far. 
n  It can be shown that w* will converge to an optimal solution 

with probability 1. 
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Generalization to Multiclass Problems 

¨  How can we use perceptrons, or linear classifiers in 
general, to classify inputs when there are K > 2 
classes? 
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K>2 Classes 

¨  Idea #1: Just use K-1 discriminant functions, each of 
which separates one class Ck from the rest.  (One-
versus-the-rest classifier.) 

¨  Problem:  Ambiguous regions 
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K>2 Classes 

¨  Idea #2: Use K(K-1)/2 discriminant functions, each 
of which separates two classes Cj, Ck from each 
other. (One-versus-one classifier.) 

¨  Each point classified by majority vote. 
¨  Problem:  Ambiguous regions 

R1

R2

R3

?C1

C2

C1

C3
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K>2 Classes 

¨  Idea #3:  Use K discriminant functions yk(x) 
¨  Use the magnitude of yk(x), not just the sign. 

   yk (x) = w k
t x

    
x assigned to Ck  if yk (x) > y j (x)∀j ≠ k

   
Decision boundary yk (x) = y j (x)→ wk −w j( )t x + wk0 −w j 0( ) = 0

 

Results in decision regions that are 
simply-connected and convex. Ri

Rj

Rk

xA

xB

�x
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Example:  Kesler’s Construction 

¨  The perceptron algorithm can be generalized to K-
class classification problems. 

¨  Example:   
¤ Kesler’s Construction: 

n Allows use of the perceptron algorithm to simultaneously 
learn K separate weight vectors wi. 

n  Inputs are then classified in Class i if and only if 

n The algorithm will converge to an optimal solution if a 
solution exists, i.e., if all training vectors can be correctly 
classified according to this rule. 

   
w i

tx > w j
t x  ∀j ≠ i
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1-of-K Coding Scheme 

¨  When there are K>2 classes, target variables can 
be coded using the 1-of-K coding scheme: 

    Input from Class Ci ⇔ t = [0 0 …1…0 0]t

Element i 
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Computational Limitations of Perceptrons 

¨  Initially, the perceptron was 
thought to be a potentially 
powerful learning machine that 
could model human neural 
processing. 

¨  However, Minsky & Papert 
(1969) showed that the single-
layer perceptron could not learn 
a simple XOR function.  

¨  This is just one example of a 
non-linearly separable pattern 
that cannot be learned by a 
single-layer perceptron.  

  x1

  x2

Marvin Minsky (1927 - ) 
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Multi-Layer Perceptrons 

¨  Minsky & Papert’s book was widely 
misinterpreted as showing that 
artificial neural networks were 
inherently limited. 

¨  This contributed to a decline in the 
reputation of neural network 
research through the 70s and 80s. 

¨  However, their findings apply only 
to single-layer perceptrons. Multi-
layer perceptrons are capable of 
learning highly nonlinear functions, 
and are used in many practical 
applications.  
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Outline 

¨  The Perceptron Algorithm 
¨  Least-Squares Classifiers 

¨  Fisher’s Linear Discriminant 
¨  Logistic Classifiers 
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Dealing with Non-Linearly Separable Inputs 

¨  The perceptron algorithm fails when the training 
data are not perfectly linearly separable. 

¨  Let’s now turn to methods for learning the 
parameter vector w of a perceptron (linear 
classifier) even when the training data are not 
linearly separable. 
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The Least Squares Method  

¨  In the least squares method, we simply fit the (x, t) 
observations with a hyperplane y(x). 

¨  Note that this is kind of a weird idea, since the t 
values are binary (when K=2), e.g., 0 or 1. 

¨  However it can work pretty well. 



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

39 

Least Squares: Learning the Parameters 

   yk (x) = w k
t x +wk0

    → y(x) = Wt x

    

where 
x = (1,xt )t

W is a (D +1) × K  matrix whose kth column is w k = w0,w k
t( )t  

   For each class k ∈1…K :

   Assume D − dimensional input vectors x.
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Learning the Parameters 

¨  Method #2:  Least Squares 
    y(x) = Wt x

    
Training dataset xn,tn( ), n = 1,…,N

   Let T be the N × K  matrix whose nth  row is tn
t

   where we use the 1-of-K  coding scheme for tn

    Let X be the N × (D +1) matrix whose nth  row is xn
t

    

Setting derivative wrt W to 0 yields:

W = Xt X( )−1 XtT = X†T

    Let RD
W( ) = X W − T

    
Then we define the error as ED

W( ) = 1
2

Rij
2

i, j
∑ = 1

2
Tr RD

W( )t RD
W( ){ }

  
Recall:  ∂

∂A
Tr AB( ) = Bt .
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Outline 

¨  The Perceptron Algorithm 
¨  Least-Squares Classifiers 
¨  Fisher’s Linear Discriminant 

¨  Logistic Classifiers 
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Fisher’s Linear Discriminant 

¨  Another way to view linear discriminants:  find the 1D subspace 
that maximizes the separation between the two classes. 

−2 2 6

−2

0

2

4

    
Let m1 =

1
N1

xn
n∈C1

∑ , m2 =
1

N2

xn
n∈C2

∑

   For example, might choose w  to maximize w t m2 −m1( ),  subject to w = 1

  This leads to w ∝m2 −m1

 

However, if conditional distributions are not isotropic, 
this is typically not optimal.
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Fisher’s Linear Discriminant 

−2 2 6

−2

0

2

4

   Let m1 = w tm1,   m2 = w tm2  be the conditional means on the 1D subspace.

   
Let sk

2 = yn − mk( )2

n∈Ck

∑  be the within-class variance on the subspace for class Ck

   
The Fisher criterion is then J(w) =

m2 − m1( )2

s1
2 + s2

2

    

This can be rewritten as 

J(w) =
w tSBw
w tSW w

where 

SB = m2 −m1( ) m2 −m1( )t  is the between-class variance

and 

SW = xn −m1( ) xn −m1( )t
n∈C1

∑ + xn −m2( ) xn −m2( )t
n∈C2

∑  is the within-class variance

   J(w) is maximized for w ∝SW
−1 m2 −m1( )
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Connection to MVN Maximum Likelihood 

¨  Recall that if the two distributions are normal with 
the same covarianceΣ, the maximum likelihood 
classifier is linear, with 

¨  Further, note that SW is proportional to the maximum 
likelihood estimator forΣ. 

¨  Thus FLD is equivalent to assuming MVN distributions 
with common covariance. 

  w ∝ Σ−1 m2 −m1( )

   J(w) is maximized for w ∝SW
−1 m2 −m1( )
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Connection to Least-Squares 

   

Change coding scheme used in least-squares method to 

tn =
N
N1

 for C1

tn = − N
N2

 for C2

   

Then one can show that the ML w  satisfies

w ∝SW
−1 m2 −m1( )



October 17, 2012 

End of Lecture 
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Problems with Least Squares 

¨  Problem #1:  Sensitivity to outliers 
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Problems with Least Squares 

¨  Problem #2:  Linear activation function is not a 
good fit to binary data.  This can lead to problems. 
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Outline 

¨  The Perceptron Algorithm 
¨  Least-Squares Classifiers 
¨  Fisher’s Linear Discriminant 
¨  Logistic Classifiers 
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Logistic Regression (K = 2) 

    

p C1 |φ( ) = y φ( ) = σ w tφ( )
p C2 |φ( ) = 1− p C1 |φ( )   

where σ (a) = 1
1+ exp(−a)

140 8 Classification models




Figure 8.3 Logistic regression model in 1D and 2D. a) One dimensional fit.
Green points denote set of examples S0 where y = 0. Pink points denote
set of examples S1 where y = 1. Note that in this (and all future figures
in this chapter) we have only plotted the probability Pr(y = 1|x) (compare
to figure 8.2c). The probability Pr(y = 0|x) can be trivially computed as
1 � Pr(y = 1|x). b) Two dimensional fit. Here, the model has a sigmoid
profile in the direction of the gradient � and is constant in the orthogonal
directions. The decision boundary (blue line) is linear.

As usual, however, it is simpler to maximize the logarithm L of this expression.
Since the logarithm is a monotonic transformation, it does not change the position
of the maximum with respect to �. However, applying the logarithm the product
and replaces it with a sum so that

L =
I⌥

i=1

yi log

⇤
1

1 + exp[��Txi]

⌅
+

I⌥

i=1

(1� yi) log

⇧
exp[��Txi]

1 + exp[��Txi]

⌃
. (8.6)

The derivative of the log likelihood L with respect to the parameters � is

⇥L

⇥�
=

I⌥

i=1

�
1

1 + exp[��Txi]
� yi

⇥
xi =

I⌥

i=1

(sig[ai]� yi)xi. (8.7)

Unfortunately, when we equate this expression to zero, there is no way to re-
arrange to get a closed form solution for the parameters �. Instead we must
rely on a non-linear optimization technique to find the maximum of this function.
We’ll now sketch the main ideas behind non-linear optimization. We defer a more
detailed discussion until section 8.10.

In non-linear optimization, we start with an initial estimate of the solution
� and iteratively improve it. The methods we will discuss rely on computing

  w
tφ

    p C1 |φ( ) = y φ( ) = σ w tφ( )

  x1

  

w1

w2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 φ1

 φ2
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Logistic Regression 

¨  Number of parameters 
¤  Logistic regression: M 
¤ Gaussian model: 2M + 2M(M+1)/2 + 1 = M2+3M+1 

    

p C1 |φ( ) = y φ( ) = σ w tφ( )
p C2 |φ( ) = 1− p C1 |φ( )

  

where

σ (a) = 1
1+ exp(−a)
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ML for Logistic Regression 

   
p t | w( ) = yn

tn 1− yn{ }1−tn

n=1

N

∏      where t = t1,…,tN( )t and yn = p C1 |φn( )

   We define the error function to be E(w) = − log p t | w( )

   Given yn = σ an( )  and an = w tφn,  one can show that

   
∇E(w) = yn − tn( )φn

n=1

N

∑

  Unfortunately, there is no closed form solution for w.
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ML for Logistic Regression:   

¨  Iterative Reweighted Least Squares 
¤ Although there is no closed form solution for the ML 

estimate of w, fortunately, the error function is convex. 
¤ Thus an appropriate iterative method is guaranteed to 

find the exact solution. 
¤ A good method is to use a local quadratic 

approximation to the log likelihood function (Newton-
Raphson update): 

   

w (new ) = w (old ) −H−1∇E(w)
where H is the Hessian matrix of E(w)
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The Hessian Matrix H 

¨  Hij describes how the ith component of the gradient 
varies as we move in the wj direction. 

¨  Let u be any unit vector.  Then 
¤ Hu describes the variation in the gradient as we move 

in the direction u. 
¤ utHu describes the projection of this variation onto u.  
¤ Thus utHu measures how much the gradient is changing 

in the u direction as we move in the u direction. 

   
H = ∇w∇wE(w), i.e., Hij =

∂E(w)
∂wi ∂w j

.
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ML for Logistic Regression 

   

w (new ) = w (old ) −H−1∇E(w)
where H is the Hessian matrix of E(w) :

   

Thus

wnew = w (old ) − ΦtRΦ( )−1
Φt y − t( )

   

H = ΦtRΦ
where R  is the N ×N  diagonal weight matrix with Rnn = yn 1− yn( )  
and Φ is the N ×M  design matrix whose nth  row is given by φn

t .

   

(Note that, since Rnn ≥ 0, R  is positive semi-definite, and hence H is positive semi-definite

Thus E(w) is convex.)

See Problem 8.3 in the text! 
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ML for Logistic Regression 

¨  Iterative Reweighted Least Squares 

142 8 Classification models







Figure 8.4 Parameter estimation for logistic regression with 1D data. a)
In maximum likelihood learning, we seek the maximum of Pr(y|X,�) with
respect to �. b) In practice, we instead maximize log likelihood: notice
that the peak is in the same place. Crosses show results of 2 iterations of
optimization using Newton’s method. c) The logistic sigmoid functions asso-
ciated with the parameters at each optimization step. As the log likelihood
increases, the model fits the data more closely: the green points represent
data where y = 0 and the purple points represent data where y = 1 and so
we expect the chosen model to increase from right to left just like curve 3.

For general functions, gradient ascent and Newton approaches only find local
maxima: we cannot be certain that there is not a taller peak in the likelihood
function elsewhere. However the log likelihood for logistic regression has a special
property: it is a convex function of the parameters �. For convex functions there
are never multiple maxima and gradient based approaches are guaranteed to find
the global maximum. It is possible to establish whether a function is convex or
not by examining the Hessian matrix. If this is positive definite for all � then the
function is convex. This is obviously the case for logistic regression as the Hessian
(equation 8.10) consists of a positive weighted sum of outer products.

The logistic regression model as described has a number of problems:

1. It is overconfident as it was learnt using maximum likelihood

2. It can only describe linear decision boundaries

3. It is computationally inne⇥cient and may overlearn the data in high dimen-
sions.

In the remaining part of this chapter we will extend this model to cope with
these problems (figure 8.5)
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  w1

  w2   w
tφ

    p C1 |φ( ) = y φ( ) = σ w tφ( )



Probability & Bayesian Inference 

J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition 

57 

Logistic Regression  

¨  For K>2, we can generalize the activation function 
by modeling the posterior probabilities as 

   

p Ck |φ( ) = yk φ( ) = exp ak( )
exp aj( )

j
∑

where the activations ak  are given by

ak = w k
tφ
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Example 
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Least-Squares Logistic 
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Outline 

¨  The Perceptron Algorithm 
¨  Least-Squares Classifiers 
¨  Fisher’s Linear Discriminant 
¨  Logistic Classifiers 


